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Abstract. New experimental neutron scattering data from fluid and solid molecular hydrogen
at high momentum transfer are interpreted by means of a theoretical calculation able to describe
the data both for parahydrogen and for an ortho-parahydrogen mixture over a wide momentum
transfer range. Our approach, valid for any diatomic molecule, reveals the occurrence of final
state effects in the scaling function and theirq dependence. It appears that at high momentum
transfer the dominant final state effects are those coming from the intramolecular interaction.

1. Introduction

In recent years, owing to the availability of an intense flux of electronvolt neutrons at pulsed
neutron sources, the experimental technique ofdeep inelastic neutron scattering(DINS),
has demonstrated its potential for providing unique and detailed information about the
mean kinetic energy and single-particle momentum distribution in a variety of classical
and quantum systems. As a consequence a well established user program now exists
in various areas of neutron science, i.e. quantum fluids, molecular science, hydrogen
bonds, atomic and molecular hydrogen in materials, and an established community of
users routinely employing this technique [1]. DINS is analogous to the measurement of
electron momentum distributions by Compton scattering [2] or the measurement of nucleon
momentum distributions by electron scattering from nuclei [3]: the whole set of techniques
rely on the assumption that the momentum distribution of target particles (electrons, nucleons
or atoms) can be obtained by inelastic scattering of the high-energy incident probes (photons,
electrons or neutrons, respectively). These techniques also share the basic principles of
data interpretation, based on the validity of theimpulse approximation(IA) [4], which
is supposed to hold in the limit of high values of both energy ¯hω, and momentum ¯hq,
transferred by the probe to the target, as was shown to be the case for square integrable
and for harmonic interactions [5, 6]. Indeed, within the IA assumption, the scattering cross
section can be described by means of a scaling variabley [7], and a scaling functionF(y, q)
which for q →∞, approaches an asymptotic valueF(y), independent ofq, determined by
the momentum distribution.

In the case of inelastic neutron scattering from diatomic molecular fluids at low values of
momentum transfer, neutrons are scattered from the whole molecule, while, asq increases,
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one obtains scattering off the single nuclei in the molecule. One can easily calculate
the values of the momentum transfer which yield scattering from a single nucleus by
means of the incoherent conditionq � 2π/r0, where r0 is the molecular bond length.
More accurately, the incoherent limit is reached whenf1(q) = 1, with f1(q) being the
intramolecular static form factor [8]. For H2, this condition is surely well satisfied for
q > 30 Å−1. Indeed it has already been shown experimentally in recent papers [9, 10] that
for these values of momentum transfer, theω and q values at the maximum of the cross
section are linked by the relationω = h̄q2/2M, whereM is the proton mass and not the
molecule mass. Generally speaking one can expect that IA holds when the energy transfer
is much higher than the typical vibrational excitation energy of the molecule (516 meV in
H2) and it is well known that deviations from the IA asymptotic scattering regime occur at
the large, but finite,q values available in a real neutron experiment. These deviations are
referred to asfinal state effects(FSE) [11] and arise from the interaction of the recoiling
single particle with the rest of the system. For systems composed of monatomic species only
one sort of FSE is present, which is the result of the interaction of the struck particle with
its environment through the intermolecular potential. In the following these effects will be
referred to asintermolecular final state effects(INTERFSE). For a diatomic or polyatomic
system, in addition to the aforementioned effects, FSE also come from the interaction of the
scattered atom with the other atoms within the same molecule (intramolecular final state
effects: INTRAFSE). At lowq (5 Å−1 < q < 20 Å−1) INTRAFSE are generally interpreted
by studying the excited states of the rotovibrational structure of the molecule [12, 13]. As
a general result the presence of both kinds of FSE determines asymmetries in the measured
F(y, q) and clear shifts of its maximum position fromy = 0. Although it is generally well
accepted that these asymmetries and shifts become smaller asq increases, the debate about
the size and form of FSE in quantum fluids and the extent to which they affectF(y, q) is
still an open question.

In previous papers a model independent procedure has been proposed for deriving the
asymptotic response function and the momentum distributions in molecular systems [14]
and a theoretical model has been proposed to describe the scattering function of diatomic
molecules atq →∞ [10, 15, 16].

In this paper we will present an extension of our work aimed at describing the
scattering process from diatomic molecules in the DINS regime at intermediateq values
(30 Å−1 < q < 60 Å−1), where the asymptotic regime has not yet been reached. We will
compare the result of our calculation with new experimental DINS data on solid and fluid
H2 in a wider thermodynamic regime than in previous experiments [10]. In order to reach
a better experimental resolution, besides the routinely used Au filter, a U filter has been
employed to determine the energy of the scattered neutrons on the eVS spectrometer. In
section 2 we present our theoretical framework for a diatomic system. The experiment and
the data analysis are described in section 3, while section 4 is devoted to the comparison
with theoretical calculations and to discussion. Section 5 contains the conclusions.

2. Theoretical background: DINS at intermediateQ values

In previous papers [10, 15] we have obtained the asymptotic scaling function of diatomic
molecular fluids by approximating the final-state wavefunctions with plane waves and
neglecting 1/q terms in theδ function in the limitq →∞. Our aim is to obtain a theoretical
expression for the scaling function able to follow the behaviour of the experimental data
at finite intermediate values ofq, where the asymptotic limit has not yet been reached.
The final states will be still described as plane waves, while the 1/q terms in the energy
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conservingδ function will be taken care of in an approximate way, generalizing an approach
proposed by Stringari for liquid4He [17] to the case of a molecular diatomic fluid. A brief
note of the results obtained has already been published [16].

Let us treat homonuclear diatomic molecular fluids as statistical mixtures of different
thermally excited levels. We will not consider high-temperature fluids, where electronic
excitations and dissociations become likely. The inelastic differential cross-section at high
energy and momentum transfer for neutron scattering from diatomic molecules can be written
as follows

d2σ

d� dE′
= Kf

Ki

∑
I,F

PI

∣∣∣∣〈8F |
2∑
n=1

b̂n exp(iq · rn)|8I 〉
∣∣∣∣2δ(h̄ω + EI − EF ). (1)

In (1),Ki andKf are the initial and final wavevectors of the scattered neutron,E′ is its final
energy,8I and8F are the initial and final-state wavefunctions for a single molecule in the
fluid system,EI andEF are the corresponding initial and final energies,PI the statistical
weights of the initial states,̂b1 = b̂2 ≡ b̂ the scattering operators for the nuclei 1 and 2, and
rn (n = 1, 2) the coordinates of the nuclei. The initial and the final-state wavefunctions can
be decomposed into orbital9i(f ), and spinorialχi ′(f ′), parts. The initial and final energies
EI andEF are independent of the spinorial degrees of freedom and then can be labelled as
Ei andEf . Let us consider the inelastic structure factor

S(q, ω) = Ki

2Kf

(
d2σ

d� dE′

)
1

〈|b|2〉 (2)

where 〈|b|2〉 = ∑
i ′,f ′ gi ′ |〈χf ′ |b̂|χi ′ 〉|2 with gi ′ the inverse of the spin multiplicity of the

incident neutron and of the nuclei 1 and 2 [15]. In the incoherent approximation, i.e.
neglecting the interference terms owing to the high momentum transfer, the inelastic
structure factor becomes

S(q, ω) =
∑
i

pi
∑
f

|〈9f | exp(iq · r1)|9i〉|2δ(h̄ω + Ei − Ef ) (3)

wherepi are the statistical weights which refer to the orbital states. In the absence of strong
intermolecular forces, the initial state energy is the sum of a translational termEm and of
an internal energy termEv,j (Ei = Em + Ev,j ), and the initial wavefunction in (3) can be
written as follows:9i(r,R) = φv,j,mj (r)ψm(R), whereφv,j,mj (r) describes the relative
motion of the two nuclei andψm(R) describes the motion of the centre of mass of a single
molecule in the bulk. The coordinateR = (r1 + r2)/2 is the coordinate of the centre of
mass of the molecule andr = r1−r2 is the relative coordinate. An analogous factorization
of the wavefunction will be used for the final state9f (r,R) = φr(r)ψg(R) and the final
energy will be rewritten as a sum of a translational termEg, and an internal energy termEr ;
Ef = Eg +Er , whereg andr represent the translational and the internal quantum numbers
of the final state, respectively. Since in its initial state, H2 is in a6 electronic ground state,
the relative wavefunction can be decomposed into radial and angular functions as follows

φv,j,mj (r) =
1

r
uv,j (r)Yj,mj (r̂) (4)

where uv,j (r) describes the vibrational motion of the nuclei andYj,mj (r̂) is the angular
wavefunction. Using the relationEi = Em+Ev,j , the statistical weight can also be factorized
into centre of masspm, and internalpv,j , weights

pi = pmpv,j . (5)
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Then we can write

S(q, ω) =
∑
r,g

∑
v,j,mj

pv,j
∑
m

pm|〈ψg| exp(iq ·R)|ψm〉|2|〈φr | exp(iq · r/2)|φv,j,mj 〉|2

×δ(h̄ω + Em + Ev,j − Er − Eg). (6)

Let us introduce the intermediate scattering functionI (q, t) as follows

I (q, t) = h̄
∫ ∞
−∞

exp(iωt)S(q, ω)dω = ICM(q, t)
∑
v,j

pv,j Iv,j (q, t) (7)

where

ICM(q, t) =
∑
g

∑
m

pm|〈ψg| exp(iq ·R)|ψm〉|2 exp

(
i

h̄
(Eg − Em)t

)
(8)

and

Iv,j (q, t) =
∑
r

j∑
mj=−j

∣∣∣∣〈φr | exp

(
iq · r

2

)
|φv,j,mj 〉

∣∣∣∣2 exp

(
i

h̄
(Er − Ev,j )t

)
(9)

represent the intermolecular and intramolecular intermediate scattering functions,
respectively. As will be shown in the following, within theplane wave approximation
(PWA) one can express these two functions in terms of the momentum distributions for the
intermolecular and intramolecular motion separately.

Stringari [17] proposed the introduction, in the energy conservingδ function of the
structure factor (3), a constant average potential energy in addition to the kinetic energy
in order to take into account, at least in an approximate way, the interaction between the
struck particle and the rest of the system in the final state. This approach was able to explain
the shift of the maximum of the scaling function with respect to the pure IA in the case
of liquid 4He. In the following we will generalize this approach to the case of diatomic
molecular fluids considering two distinct average potential energies, one for the interaction
of the struck molecule in the fluid, and another for the interaction between the nuclei in
this molecule. As will be shown in section 4, the shape of the structure factor is essentially
determined by the dynamics of the internal modes of the molecule, while the centre-of-mass
dynamics of the molecule only slightly affectsS(q, ω).

Let us consider the intermolecular contribution first. Assuming the PWA, we have the
following expressions for the centre-of-mass final stateψg, and its energy eigenvalueEg

ψg(R) = 1√
8π3

exp(iK ·R) (10)

Eg = h̄2

4M
K2+ 〈Vg〉 (11)

whereM is the mass of a single atom of the diatomic molecule and〈Vg〉 is an approximate,
constant and independent ofg (i.e. ofK), average value for the intermolecular interaction
acting on the final states of the centre-of-mass wavefunction. The sum overg in (8) has
to be replaced by an integral in dK, and then the intermolecular intermediate scattering
function becomes

ICM(q, t)=
∑
m

pm
1

8π3

∫
dK|〈exp[i(q−K)·R]|ψm〉|2 exp

[
i

(
h̄

4M
K2+ 〈Vg〉

h̄
−Em
h̄

)
t

]
'
∫
N(K − q) exp

[
i

(
h̄

4M
K2+ 〈Vg〉

h̄
− Em

h̄

)
t

]
dK (12)
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where in the last step of the previous equation, the centre-of-mass energyEm has been
replaced by a constant valueEm. The functionN(P ) is the momentum distribution of the
centre of mass of the molecule in the bulk

N(P ) =
∑
m

pm

∣∣∣∣ ∫ dR
exp(−iP ·R)√

8π3
ψm(R)

∣∣∣∣2. (13)

In quantum molecular fluids (hydrogen and deuterium at high density and low temperature),
a Gaussian shape ofN(P ) is considered a reasonable description [18]

N(P ) = 1√
8π3σ 3

T

exp

(−|P |2
2σ 2

T

)
(14)

whereσT is simply related to the mean value of the kinetic energy of the centre of mass,
averaged over the initial statesψm weighted bypm, 〈Tm〉, through the following equation

σT =
√

4M〈Tm〉/(3h̄2). (15)

The varianceσ 2
T is related to the temperatureT in a complex way and has a finite value

even atT = 0, i.e. there is a zero-point value of〈P 2〉 (and then of〈Tm〉), other than zero.
By increasing the temperature and by lowering the density the classic regime is reached,
where〈Tm〉 = 3/2 kBT .

In order to satisfy thefirst moment sum rule, we assume in (12): 〈Vg〉 ≡ 〈Vm〉
= Em − 〈Tm〉 (see the appendix), where〈Vm〉 is the mean value of the potential energy
of the centre of mass, averaged over all the initial statesψm weighted bypm, as for〈Tm〉.
After the substitutionP =K − q, ICM(q, t) becomes

ICM(q, t) =
∫
N(P ) exp

[
i

(
h̄

4M
q2+ h̄

4M
P 2+ h̄

2M
P · q − 〈Tm〉

h̄

)
t

]
dP . (16)

Let us now consider the intramolecular contribution that comes from the internal structure
of the molecule. In the PWA [5, 6, 19], the intramolecular final state wavefunctions and
eigenvalues can be cast as

φr(r) = 1√
8π3

exp(ik · r) (17)

Er = h̄2

M
k2+ 〈Vr〉 (18)

where〈Vr〉 is an approximate, constant and independent ofr (i.e. of k), mean value for the
intramolecular interaction acting on the final states internal wavefunctions. The sum over
r in (9) has to be replaced by an integral in dk, and then the intramolecular intermediate
scattering function becomes

Iv,j (q, t) = 1

(2j + 1)

j∑
mj=−j

1

8π3

∫
dk|〈exp[i(q/2− k) · r]|φv,j,mj 〉|2

× exp

[
i

h̄

(
h̄2

M
k2+ 〈Vr〉 − Ev,j

)
t

]
=
∫
nv,j (k − q/2) exp

[
i

h̄

(
h̄2

M
k2+ 〈Vr〉 − Ev,j

)
t

]
dk (19)
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wherenv,j (p) is the square of the Fourier transform of the wavefunction of the relative
motion in the initial state,φv,j,mj (r), averaged overmj , i.e. the internal momentum
distribution for the statev, j

nv,j (p) = 1

2j + 1

j∑
mj=−j

∣∣∣∣ ∫ dr
exp(−ip · r)√

8π3
φv,j,mj (r)

∣∣∣∣2. (20)

We assume thatφv,j,mj (r) of the H2 molecule in the initial state is well described by
the ideal harmonic approximation, i.e. that molecular rotations are ideal and completely
decoupled from vibrations, centrifugal distortions are neglected, and vibrations are purely
harmonic. This is a good approximation for the initial states which are relevantly populated
in the low temperature range in which we are interested in (see the following section), i.e.
v = 0, j = 0, 1. As a consequencenv,j (p) is given by

nv,j (p) = α

2v+1
√
π5v!

∣∣∣∣ ∫ ∞
0
r jj (pr) exp

(
− α

2

2
(r − ro)2

)
Hv[α(r − ro)] dr

∣∣∣∣2 (21)

whereHv are the Hermite polynomials,jj the spherical Bessel functions, andα is directly
connected to the vibrational frequency of the molecules,ωo (α2 = µωo/h̄, h̄ωo = 516 meV
for the H2 molecule [20]), whilero (ro = 0.742 Å−1 in the H2 molecule [20]) andµ are
the bond length and reduced mass of the molecule, respectively. Within the same ideal
harmonic approximation, the internal statistical weight of (7),pv,j , can be calculated using
the expression

pv,j = (2j + 1)cj exp[−(Ev + Ej)/(KBT )]
Z

(22)

with Ev as the vibrational energy,Ej the rotational energy,Z a normalization constant and
cj the nuclear spinorial degeneration factor. In the case of H2, cj has only two values: one
for odd j (c2n+1 = 3) and another for evenj (c2n = 1) [20].

For the intramolecular potential energy, as for the intermolecular one, we assume
〈Vr〉 ≡ 〈Vv,j 〉 = Ev,j−〈Tv,j 〉 (see the appendix), where〈Vv,j 〉 is the mean value, independent
of mj , of the intramolecular potential energy in the initial stateφv,j,mj , and 〈Tv,j 〉 is the
corresponding mean value of the intramolecular kinetic energy. After the substitution:
p = k − q/2, Iv,j (q, t) becomes

Iv,j (q, t) =
∫
nv,j (p) exp

[
i

(
h̄

4M
q2+ h̄

M
p2+ h̄

M
p · q − 〈Tv,j 〉

h̄

)
t

]
dp. (23)

Let us consider the scaling variabley

y = M

h̄2q

(
h̄ω − h̄

2q2

2M

)
(24)

and the scaling function

F(y, q) = h̄
2q

M
S(q, ω). (25)

It is quite useful to introduce the Fourier transform ofF(y, q), i.e. F̃ (s, q)

F̃ (s, q) =
∫ ∞
−∞

exp(isy)F (y, q)dy. (26)

It is worth noting thatF̃ (s, q) is simply related toI (q, t) by means of a phase factor

F̃ (s, q) = exp

(
− i
sq

2

)
I (q, t) (27)
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wheres has the meaning of the distance covered by the recoiling nucleus at timet

s = h̄

M
qt. (28)

It is also clear thatF̃ (s, q) can be decomposed in centre of mass,F̃CM(s, q), and
intramolecular factors

F̃ (s, q) = F̃CM(s, q)
∑
v,j

pv,j F̃v,j (s, q) (29)

where

F̃CM(s, q) = exp

(
− i
sq

4

)
ICM(q, t) (30)

and

F̃v,j (s, q) = exp

(
− i
sq

4

)
Iv,j (q, t). (31)

Using the well known convolution theorem, a more compact way of writing the scaling
function appears

F(y, q) =
∑
v,j

pv,j

∫ ∞
−∞

Fv,j (y − y ′, q)FCM(y ′, q) dy ′ (32)

with

Fv,j (y, q) = 1

2π

∫ ∞
−∞

exp(−isy)F̃v,j (s, q)ds (33)

FCM(y, q) = 1

2π

∫ ∞
−∞

exp(−isy)F̃CM(s, q)ds. (34)

In terms of the momentum distributions, by choosing thez axis in the direction ofq, one
obtains

Fv,j (y, q) =
∫
nv,j (p)δ

(
y − pz − p

2

q
+ M

h̄2q
〈Tv,j 〉

)
dp (35)

and

FCM(y, q) =
∫
N(P )δ

(
y − Pz

2
− P

2

4q
+ M

h̄2q
〈Tm〉

)
dP . (36)

It is easy to check that forq →∞ the 1/q dependent terms in (35) and (36) disappear
and the asymptotic scaling function in IA is recovered [10, 15].

Before comparing the theoretical expression for the scaling function with the
experimental data, a convolution ofF(y, q) with the experimental resolution function has
to be performed. This yields

F thR (y, q) =
∫
F(y ′, q)R(y − y ′, q)dy ′. (37)
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Table 1. Parameters describing the resolution functionR(y), for the massM = 1.0079 amu, at
the scattering angles of the experimental data for both Au and U foils. In the first caseR(y) is
well represented by a Voigt function, while in the second, a Gaussian function is adequate. The
geometrical component ofR(y) is well described by a Gaussian function of standard deviationσG
for both foils. On the contrary, the energy contribution to the resolution function is represented
by a Lorentzian function in the case of Au foil (0E/2 is the HWHM of this Lorentzian) and
by a Gaussian function in that of the U foil (σE is the standard deviation of this Gaussian). At
each angle the momentum transferq̄, corresponding to the maximum of each recoil peak, is also
shown.

# 2θ◦ q̄ (Å−1) σG (Å−1) 0E/2 (Å−1) Foil

16 50.1 58.2 0.70 0.63 Au
15 48.2 54.5 0.71 0.66 Au
14 46.1 50.6 0.72 0.71 Au
13 44.1 47.2 0.72 0.76 Au
12 42.1 44.0 0.72 0.82 Au
11 40.0 40.8 0.72 0.88 Au
10 37.9 38.0 0.73 0.94 Au

9 35.9 35.2 0.73 1.01 Au

# 2θ◦ q̄ (Å−1) σG (Å−1) σE (Å−1) Foil

25 42.4 51.8 0.77 0.30 U
26 40.5 48.4 0.77 0.32 U
27 38.6 45.4 0.77 0.34 U
28 36.8 42.4 0.78 0.36 U
29 34.9 39.7 0.78 0.39 U
30 33.0 36.9 0.78 0.42 U
31 31.2 34.3 0.78 0.45 U
32 29.3 31.8 0.79 0.48 U

3. DINS experiment on H2

The experiment was performed at theneutron spallation sourceISIS, operating at the
Rutherford Appleton Laboratory (UK), and employed the eVS spectrometer, an inverse
geometry instrument, using an incident pulsed neutron beam with energies in the range
1–100 eV [21].

The energies of the scattered neutrons were determined by using resonance absorption
filters (both uranium and gold foils) fixed on an aluminium frame and placed between
the sample and the scintillation detectors. Foils are moved in and out of the scattered
neutron beam cyclically every 300 s. This procedure of data recording allows the effect
of possible drifts in the efficiency of the detectors during a single run to be averaged out.
The measurements presented here were obtained by using gold filters, with an absorption
resonance energy of 4911 meV [22], and uranium filters, with an absorption resonance
energy of 6671 meV [22]. The energies and energy widths of the nuclear resonances were
checked by measurements of the scattering from a Pb standard sample. The scattering
angles 2θ , of each of 9–16 (Au foil) and 25–32 (U foil) detectors which we used in this
experiment and the corresponding momentum transfers are reported in table 1.

Five independent contributions to resolution functionR(y), arise from uncertainties in
the following instrument components: neutron time-of-flight, initial and final flight paths,
scattering angles and energy values of the analyser foil. ThereforeR(y) on eVS depends
on both the geometrical configuration of the instrument (this component is well described
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Table 2. Thermodynamic conditions for experimental data, specified by temperature,T ,
molecular densityρ, stateS, and percentage of parahydrogen of the sample.IC is the total
integrated proton current of each run andσT the standard deviation related to the translational
kinetic energy of the H2 molecule (15). The averaged values forσT , IC · ρ and parahydrogen
percentage are also reported for the summed runsA–D andE–I .

# T (K) ρ (nm−3) State Para. (%) σT (Å−1) IC (µA h)

A 10 26.45 S 100.0 1.450 3381
B 17 22.41 L 99.9 1.341 4052
C 30 22.41 L 97.0 1.476 4570
D 40 22.41 G 88.7 1.578 3902
E 50 22.41 G 77.1 1.690 3333
F 60 22.41 G 65.6 1.792 3588
G 48 10.45 G 79.4 1.503 1912
H 70 10.45 G 56.0 1.771 6065
I 110 10.45 G 35.8 2.182 2024

Sum Para. (%) σT (Å−1) IC · ρ (µA h nm−3)

A–D 96.2 1.467 3.695× 105

E–I 65.3 1.768 2.596× 105

by a Gaussian function) and on the intrinsic energy width of the resonance foil. The latter
includes two distinct contributions: a Gaussian one, coming from the thermal vibrations
of the lattice constituting the metallic foil, and a Lorentzian-like one, coming from the
Breit–Wigner absorption cross section of the nuclei [23]. In the case of Au foil, the
contribution coming from the lattice is small and can be included in the main Lorentzian
component, so that the only Gaussian contribution toR(y) comes from the geometrical
component, giving rise to an overall Voigt function shape forR(y). On the contrary, for U
foil, the Breit–Wigner contribution is almost negligible in comparison with the lattice one
and the overallR(y) is well approximated by a Gaussian function [24]. The total resolution
components for each detector are reported in table 1, whereσG is the standard deviation
of the geometrical components, whileσE represent the standard deviation of the intrinsic
Gaussian component of the U foil and0E/2 is thehalf width at half maximum(HWHM)
for the intrinsic Lorentzian component of the Au foil.

The sample was very high purity hydrogen (quoted as 99.999% pure) placed within two
coaxial aluminium tubes separated by a 1.0 mm gap. This cylindrical sample holder was
coupled to the cold finger of a closed circuit helium ‘Orange’ cryostat and connected to
the external gas handling system by means of a 1/16′′ OD stainless steel tube. A hydrogen
sample was measured in nine different thermodynamic conditions (see table 2), namely at
three different densities:ρ = 26.45 molecules nm−3 at 10 K; ρ = 22.41 molecules nm−3

at five temperatures between 17 and 60 K;ρ = 10.45 molecules nm−3 at three
temperatures between 48 and 110 K. At these temperatures different equilibrium percentages
of parahydrogen (j = 0) and orthohydrogen (j = 1) are present in our sample (see
table 2). For all temperatures the statistical weightspj=2 are not greater than the same
statistical weightpj=2 at T = 110 K (i.e. pj=2 6 1.6 × 10−2). Therefore the analysis
was carried out considering that only the initial statesj = 0 and j = 1 are populated.
The equilibrium conditions can be reached starting from room temperature ordinary gas
only if the sample is cooled in the presence of specific catalytic paramagnetic salts (solid
Cr2O3–γAl 2O3) [25], that were placed at the bottom of the cell, out of the incident beam.
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Figure 1. FCM(y, q) for q = 30 Å−1 is plotted as full curves at two temperatures,T = 17 K
(narrow peak) andT = 110 K (broad peak). The mean kinetic energies for these two states are
respectively 64.3 and 171.8 K and both exceed the classical values. The broken curves represent
the corresponding asymptotic scaling functionFCM(y).

The thermodynamic conditions were continuously monitored throughout the experiment
by checking the temperature and pressure in the sample container. At each thermodynamic
point three runs, lasting 12 h each, were performed and were subsequently summed together,
after checking the stability of the whole system. For each measurement the total integrated
current of the proton accelerator, IC, obtained in this way is reported in table 2. Experimental
data reduction was performed for each detector and thermodynamic condition separately:
the filter-in and filter-out time-of-flight spectra were normalized to the monitor detector and
then subtracted off. In this way the fast neutron background is also removed from data. The
subtraction of cell contribution was not necessary, because hydrogen and aluminium recoil
peaks are placed at different positions in eVS time-of-flight spectra. Multiple scattering was
evaluated by means of a Monte Carlo routine, and its intensity was found to be completely
negligible in comparison with primary scattering. Subsequently, time-of-flight data have
been transformed iny–q space using standard eVS routines, choosing the mass of a single
hydrogen atom (MH = 1.0079 amu) as recoil mass (see section 2).

As was anticipated in section 2, the centre-of-mass dynamics of the molecule described
by FCM(y, q) (see (36)), which is strongly dependent on temperature and density through
the mean kinetic energy (seeσT in table 2), does contribute very little to the scaling function
of the system. This can be appreciated from figure 1, whereFCM(y, q) is shown for state
B (T = 17 K andρ = 22.41 nm−3) and stateI (T = 110 K andρ = 10.45 nm−3), at
q = 30 Å−1 and from figure 2, where for the stateB the wholeF(y, q) function (from (29))
is compared with

∑
v,j pv,j Fv,j (y, q) (being for this state mainlyν = 0 andj = 0, see

table 2). In figures 1 and 2 we have also reported the corresponding asymptotic functions
calculated in the IA limit (q → ∞). From figure 1 we observe a negligible shift towards
negative values ofy of the scaling function atq = 30 Å−1 and a strong dependence on
σT , but with a HWHM which is in any case only of the order of∼1 Å−1. This finding
explains why in figure 2 the widths and the shifts of the broken and full curves are nearly
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the same. As a consequence we can conclude that most of the shift of the peak and
HWHM of F(y, q) at q = 30 Å−1 are due, in figure 2, to the contributions coming from
Fv,j (y, q). Since the same kind of behaviour is also observed for all temperatures, we can
conclude that temperature influences the totalF(y, q) essentially throughpν,j . For this
reason, in order to increase the statistical accuracy, data setsA–D containing essentially
parahydrogen (an average orthohydrogen percentage of less than 4%) on one side, and data
setsE–I , containing a mixture of ortho- and parahydrogen (orthohydrogen percentage on
average'35%) on the other, have been summed together, properly weighted withIC · ρ.
This procedure was adopted for data recorded from both U (summing the responses from the
statesA–D andE–I for the individual detectors 25–32) and Au (summing the responses
from the statesA–D and E–I for the individual detectors 9–16) foils, yielding at each
scattering angle only two averaged scaling functionsF

exp
R (y, q). In the following the sum

for the statesA–D will be referred to asparahydrogenand the sum for the statesE–I as
mixture. We observed that the averaged data for parahydrogen with the gold foil are almost
equal to the data corresponding to the thermodynamic statesA, B, C andD.

Figure 2. F(y, q) for q = 30 Å−1 at T = 17 K (broken curve),Fν,j (y, q) (v = 0, j = 0)
(full curve), and the corresponding asymptotic scaling functionF(y) (chain curve) andFν,j (y)
(dotted curve).

4. Data analysis and discussion

In order to compare experimental data and the theoretical calculations described in section 2,
the theoretical scaling functionF thR (y, q) (see (37)) has been calculated at a fixed scattering
angle for the exact values of they–q space covered by each detector using the corresponding
resolution functionR(y), constructed with the parameter listed in table 1. In this way a
F thR (y, q) for each detector has been produced. In the calculation ofF thR (y, q) we have used
h̄ωo = 516 meV for the vibrational frequency,ro = 0.742 Å for the molecular bond length
[20] (see (21)), while〈T̄m〉 is derived fromσT through (18) and〈Tv=0,j=0〉 = 129 meV and
〈Tv=0,j=1〉 = 144 meV.
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Figure 3. ExperimentalF exp
R (y, q) (full squares) forparahydrogen(A–D states and Au foil,

see text) andF̄ thR (y, q) (full curve) for four scattering angles, 2θ = 35.9◦, 40.0◦, 44.1◦ and
50.1◦, are plotted in (a), (b), (c) and (d), respectively. The lower abscissa is the scaling variable
y, and the top abscissa the momentum transferq. In (a) and (b) the theoretical scaling function
obtained from Young and Koppel modelF̄ th(YK)R(y, q), is also plotted (short-dashed curve), while

in (d) we include the asymptotic scaling function̄F thR (y), (long-dashed curve).

The calculations ofF thR (y, q) involved a convolution with the intermolecular
FCM(y, q) according to (29) and (36), whereN(P ) is a Gaussian molecular momentum
distribution (14). For each thermodynamic state we calculatedσT (see (15)) using
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Figure 3. (Continued)

a path integral Monte Carlosimulation (PIMC) [26], a well assessed technique for
determining the macroscopic and microscopic properties of quantum systems [27], fluid
parahydrogen included [28]. In particular the calculatedσT values for parahydrogen
agree very well, within statistical accuracy, with those derived from a previous
experiment performed on the MARI spectrometer on fluid H2 [26], in the same
thermodynamic conditions. Our results obtained from PIMC simulations are reported in
table 2.
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In the same way as for the experimentalF
exp
R (y, q), only two averagedF̄ thR (y, q) have

been considered: one for theparahydrogenand one for themixture, summing the responses
corresponding to the statesA–D andE–I with the proper values forIC and statistical
weights.

In figures 3(a)–(d) a comparison between experimental scattering dataF
exp
R (y, q) from

parahydrogenusing Au foil and F̄ thR (y, q), calculated for the corresponding scattering
angles, is shown, while in figures 4(a) and (b) the comparison is betweenF̄ thR (y, q) and
experimental parahydrogen data using U foil. The experimental data were normalized by
introducing a constant for each detector and performing a fit relative to the theoretical results
in the range−15 Å−1 6 y 6 15 Å−1 for Au foil and −10 Å−1 6 y 6 15 Å−1 for the U
foil. In the latter case, owing to a small inconsistency in the energy value derived from the
resonant foil, a small shift of the peak position has been allowed in the range(0.0±0.5) Å−1.
A similar procedure has been set up for data coming from themixture. Figures 5(a)–(d) show
a comparison between experimental scattering data from themixture(Au foil) and F̄ thR (y, q),
calculated for each scattering angle and broadened for the proper resolution functionR(y),
while in figures 6(a) and (b) the comparison is established between themixture (U foil) and
F̄ thR (y, q) treated in the same way as before. The reducedχ2 values obtained for these four
sets of data are shown in table 3. A satisfactory agreement is obtained between calculations
and experiment in the four sets of data in the wholeq range, especially as far as themixture
is concerned. From these figures we observe that our theory describes DINS scattering quite
well as a function ofq and that, as expected, the agreement is certainly more satisfactory
for data obtained at the highest values ofq in particular for the Au foil. For completeness,
at the highestq values (figures 3(d) and 5(d)) the scattering response in the asymptotic
limit, F(y), has also been plotted. The values ofχ2 for parahydrogen(χ2 = 2.71) and for
the mixture (χ2 = 1.23) obtained in this case demonstrate that the final state effects are not
yet negligible even at the highest experimentalq value of 58Å−1.

Table 3. Values for reducedχ2 as determined from the fits on experimental data for
parahydrogen(A–D states) andmixture (E–I states) using our calculation or the Young and
Koppel (YK) model. Detectors 9–16 are for the Au foil and detectors 25–32 for the U foil.

# χ2 (Para.) χ2 (Para.)(YK) χ2 (Mix.) χ2 (Mix.)(YK) q̄ (Å−1)

16 1.00 — 0.45 — 58.2
15 1.95 — 1.12 — 54.5
14 1.70 — 0.84 — 50.6
13 2.05 — 1.17 — 47.2
12 1.86 — 1.27 — 44.0
11 2.11 11.6 1.34 4.90 40.8
10 2.19 7.97 1.24 3.47 38.0

9 2.79 7.45 1.17 3.05 35.2

# χ2 (Para.) χ2 (Para.)(YK) χ2 (Mix.) χ2 (Mix.)(YK) q̄ (Å−1)

25 2.02 — 1.61 — 54.0
26 1.49 — 0.72 — 51.5
27 1.37 — 0.74 — 49.2
28 0.90 — 0.71 — 47.0
29 1.97 — 1.24 — 44.9
30 2.14 4.21 0.87 2.32 42.8
31 2.25 3.73 0.92 1.99 40.9
32 1.66 2.53 0.79 1.39 39.0



Deep inelastic neutron scattering 7105

Figure 4. ExperimentalF exp
R (y, q) (full squares) forparahydrogen(A–D states and U foil, see

text) andF̄ thR (y, q) (full curve) for two scattering angles, 2θ = 29.3◦ and 42.4◦, are plotted in
(a) and (b), respectively. The lower abscissa is the scaling variabley, and the top abscissa the
momentum transferq. The spurious peaks are the cell contributions produced by the different
uranium resonances (left side 6671 meV, right side 20 872 meV).

Furthermore we have attempted to explain the departures from the IA using, for
the description of the final states in the intramolecular scaling function, the simple free
rotator model proposed by Young and Koppel (YK) [13]. This model is expected to
describe the experimental data for those values of energy transfer to the intramolecular
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Figure 5. ExperimentalF exp
R (y, q) (full squares) formixture (E–I states and Au foil, see text)

and F̄ thR (y, q) (full curve) for four scattering angles, 2θ = 35.9◦, 40.0◦, 44.1◦ and 50.1◦, are
plotted in (a), (b), (c) and (d), respectively. The lower abscissa is the scaling variable,y, and the
top abscissa the momentum transfer,q. In (a) and (b) the theoretical scaling function obtained
from Young and Koppel model,̄F th(YK)R(y, q), is also plotted (short-dashed curve), while in

(d) we include the asymptotic scaling function,F̄ thR (y), (long-dashed curve).

motion which are lower than the molecular dissociation threshold, i.e.64.75 eV. We note
that this model treats the intramolecular scattering process in the framework of an ideal
molecular rotation, decoupled from a purely harmonic molecular vibration and convoluted
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Figure 5. (Continued)

with the centre-of-mass momentum distribution scaling function. This model has been
applied in previous papers to fluid and solid hydrogen for much lower values ofq (i.e.
q < 20 Å−1) [26, 29]. The scaling function [12] calculated using this model has been
subsequently convoluted with the proper resolution functionR(y) (see table 1) to yield the
response function̄F th(YK)R(y, q) for parahydrogen(figures 3(a) and (b)) and for themixture
(figures 5(a) and (b)) for the low scattering angle detectors. The results of the Young
and Koppel model are clearly worse than those obtained from the calculation presented
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Figure 6. ExperimentalF exp
R (y, q) (full squares) formixture (E–I states and U foil, see text)

and F̄ thR (y, q) (full curve) for two scattering angles, 2θ = 29.3◦ and 42.4◦, are plotted in (a)
and (b), respectively. The lower abscissa is the scaling variable,y, and the top abscissa the
momentum transfer,q. The spurious peaks are the cell contributions produced by two uranium
resonances (left side 6671 meV, right side 20 872 meV).

in section 2, as also shown from the reducedχ2 values reported in table 3, which get
worse asq increases for the Young and Koppel model. A possible explanation of these
results is that in DINS, even if the energy transfer to the internal degrees of freedom of the
molecule does not exceed the molecular dissociation threshold (e.g., the energy transfer
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to the internal motion corresponding to the peak position of figure 3(a) is∼=2.3 eV),
the vibrational levels excited in the scattering process are probably affected by strong
anharmonicities of the intramolecular potential. Moreover, asq increases the interaction
between the rotational and vibrational levels becomes larger and larger with the consequent
development of centrifugal distortions. For reducedq values (q < 20 Å−1), these effects
could be taken into account in an approximate way, by introducing some experimentally
determined energy levels [12].

Let us briefly discuss our present calculation from the point of view of the roto-
vibrational Young and Koppel model. Our corrected IA model contains two main
approximations: (i) it assumes, as shown in section 2, that intramolecular final states are
plane waves; (ii) it does not include any correlation between the difference of the rotational
quantum numbers in the initial and final states1j , and the total nuclear spin of the hydrogen
molecule [4]. This second assumption is rigorous only for dissociated final states (owing to
their infinite degeneracy inj ). However, we believe that even for highly excited molecular
bound states our description is quite reasonable because of the following facts: (i) the
behaviour of these states, in the region where they overlap the initial ground state, is plane-
wave like [19]; (ii) their density of states, i.e. the number of states in a unitary energy
interval, is quite elevated owing to the anharmonic effects that reduce the gap between two
subsequent vibrational states; and, in addition, because a large number of roto-vibrational
states labelled with different rotational numbers are present [30].

Thus we think that our approximation is still valid for highly excited molecular bound
states, even if they are not real plane waves and thej degeneracy does not hold rigorously.

5. Conclusions

In conclusion we have presented a model which uses centre of mass and internal momentum
distributions as characteristic features of diatomic homonuclear molecules. Our model
is able to offer a possible description of the main features of the experimental data at
intermediate and high-q values, that is the shift of the recoiling peak and the overall shape
of the scaling function, and has to be regarded as an improvement in the intermediate
and high-q region with respect to the description of the scattering process of the Young and
Koppel model. Our calculation does not appear to be completely satisfactory in reproducing
the details and the line shape of the whole function, however this fact can be understood,
owing to the approximations involved in the calculation and last but not least the present
description in terms of plane waves of the wavefunction in the final state.

We can also conclude (see figures 1 and 2) that in our experiment INTERFSE
are negligible as compared to INTRAFSE, since in any case the centre-of-mass motion
represents a small contribution to the dynamics of the system. On the contrary INTRAFSE
contribute significantly to the shape of the response function atq values650 Å−1. This is
to our knowledge the first time that the relative weight of these two kinds of distinct FSE
contributions has been discussed in a molecular fluid for these high-q values.

There is, however, an intrinsic limit of our theoretical calculation in its ability to describe
the scattering at finite-q values from a single hydrogen molecule. In fact as we have pointed
out in appendix A, it does not describe exactly the scattering process, since it does not fulfil
the incoherent sum rules for second and higher momentsof F(y, q) (i.e. of S(q, ω)) [11].
An exact calculation starting from a precise quantum mechanical treatment of the final state
wavefunctions of a single molecule, i.e. dealing with the eigenstates of a realistic interatomic
potential [30], is probably needed if one wants to obtain a further sensible improvement in
the description of the experimental data.
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Appendix

In this appendix we will briefly recall the idea proposed by Stringari [17] for taking into
account in the inelastic structure factor an average value of the potential energy in the final
states. Let us start from IA for the inelastic structure factor of a particle with massM

SIA(q, ω) =
∫
ni(p)δ

(
h̄ω − h̄

2(q + p)2
2M

+ h̄
2p2

2M

)
dp (38)

whereni(p) is the momentum distribution in the initial state. In this expression both the
energies of the final and initial states have been assumed to be only kinetic. Stringari
proposed to replace the initial kinetic energy with the exact valueEi of the total energy for
the initial state, and to add a constant〈Vf 〉 in order to include the effect of the potential
energy in the final states

SSt (q, ω) =
∫
ni(p)δ

(
h̄ω − h̄

2(q + p)2
2M

− 〈Vf 〉 + Ei
)

dp. (39)

The evaluation of the unknown quantity〈Vf 〉 can be performed using a well assessed sum
rule, which holds exactly for both coherent and incoherentS(q, ω) [4]: the first moment
sum rulefor S(q, ω), that can be written as∫ ∞

−∞
ωS(q, ω)dω = h̄q

2

2M
(40)

whereh̄2q2/2M is the recoil energy of the struck particle. Substituting (39) in (40), the
first moment sum ruleappears as∫ ∞

−∞
ω dω

∫
ni(p)δ

(
h̄ω − h̄

2(q + p)2
2M

− 〈Vf 〉 + Ei
)

dp = h̄q
2

2M
. (41)

Using standard properties ofni(p) i.e.
∫
ni(p) dp = 1,

∫
ni(p)p dp = 0 and

∫
ni(p)p

2 dp
= (2M/h̄2)〈Ti〉 (where〈Ti〉 is the mean value of the kinetic energy of the initial state), one
obtains

〈Vf 〉 = Ei − 〈Ti〉 ≡ 〈Vi〉. (42)

This result is quite important because it assesses that in this approximation the mean value
of the potential energy is the same for both the initial and the final states. Introducing the
previous relation into (39), one immediately obtains the Stringari approximation

SSt (q, ω) =
∫
ni(p)δ

(
h̄ω − h̄

2(q + p)2
2M

+ 〈Ti〉
)

dp. (43)

Unfortunately, as pointed out by Rinat [31], Stringari’s approximate description of FSE
is biased by some defect. For instance it violates thesecond moment sum rule, that
ought to hold exactly for incoherentS(q, ω). The incoherent limit ofS(q, ω) is reached
when q � 2π/d, where d is the typical spacing between the particles we are dealing
with. It is generally accepted [11] that the incoherent limit is widely justified when
S(q) = ∫∞−∞ S(q, ω)dω ' 1. This relation, which is known as incoherentzeroth moment

sum rule, is fulfilled in the case of hydrogen forq > 20 Å−1 where (|S(q)−1| 6 3.1×10−3)
[32]. The second moment sum rulefor incoherentS(q, ω) can be written as∫ ∞

−∞

(
ω − h̄q

2

2M

)2

S(q, ω)dω = 2〈Ti〉
3M

q2. (44)
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Introducing (39) into the previous equation and using the aforementioned properties of
ni(p), one obtains

2〈Ti〉
3M

q2−
( 〈Ti〉2
h̄2 −

h̄2〈p4〉
4M2

)
= 2〈Ti〉

3M
q2. (45)

This relation is clearly false for a genericni(p) (e.g., for a Gaussian shape of the momentum
distribution, the terms within brackets in (45), become:(h̄2/4M2) (〈p2〉2 − 〈p4〉) =
(3h̄2/4M2) 〈p2〉2 6= 0); but for q2 � 〈p2〉, the difference between the right- and the left-
hand side of (45) becomes less and less relevant. In the limit ofq → ∞, the Stringari
approximation reproduces IA, and thesecond moment sum ruleis recovered exactly.
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